Evaluation of a commercial cardiac motion phantom for dual‐energy chest radiography
نویسندگان
چکیده
Misregistration due to cardiac motion causes artifacts in two-exposure dual-energy subtraction images, in both the soft-tissue-only image and the bone-only image. Two previous investigations have attempted to avoid misregistration artifacts by using cardiac gating of the first and second exposures. The severity of misregistration was affected by the heart rate, the time interval between the low- and high-energy exposures, the total duration of the two exposures, and the phase of the cardiac cycle at the start of the exposure sequence. We sought to determine whether a commercial phantom with a simulated beating heart can be used to investigate the factors affecting misregistration in dual-energy chest radiography. We made dual-energy images of the phantom in postero-anterior orientation using the indirect digital radiography system (GE XQ/i). We acquired digital images at heart rates between 40 beats per minute and 120 beats per minute and transferred them to a computer, where the area of the artifact on the silhouette of the heart was measured from both soft-tissue-only and bone-only images. For comparison, we measured misregistration in clinical dual-energy subtraction images by the same method. Generally speaking, without synchronization of the exposure sequence with the cardiac cycle, the area of the misregistration artifact increased with heart rate for both the phantom and clinical images. However, the phantom exaggerated the magnitude of misregistration relative to clinical images. Although this phantom was designed for horizontal operation and computed tomography imaging, it can be used in an upright configuration to simulate heart motion for investigation of dual-energy misregistration artifacts and control.
منابع مشابه
Evaluation of Simultaneous Dual-radioisotope SPECT Imaging Using 18F-fluorodeoxyglucose and 99mTc-tetrofosmin
Objective(s): Use of a positron emission tomography (PET)/single-photonemission computed tomography (SPECT) system facilitates the simultaneousacquisition of images with fluorine-18 fluorodeoxyglucose (18F-FDG) andtechnetium (99mTc)-tetrofosmin. However, 18F has a short half-life, and 511keV Compton-scattered photons are detected in the 99mTc energy window.Therefore, in this study, we aimed to ...
متن کاملConstruction of an Equivalent Chest Homogeneous Phantom for Evaluation of Image Quality in Pediatric Radiography
Introduction: The purpose of this study is to build homogeneous equivalent phantom chest in order to provide the necessary ability for checking the image quality in radiographic tests in four age groups of children in terms of the most recent age group categorization ICRP103. This phantom provides the features of weakness and discrepancies similar to body and can be consi...
متن کاملPatient effective dose evaluation for chest X-ray examination in three digital radiography centers
Background: The radiation doses resulting from diagnostic X-ray examinations are routinely measured in terms of entrance surface dose (ESD) and effective dose (ED). In this study, for the purpose of radiation protection, the radiation doses received from Digital chest X-ray examination were evaluated in terms of ESD and ED. Material and Methods: The ED was calculated by using the MCNP ...
متن کاملEvaluation of X-ray absorbed dose in thyroid during CXR imaging of the chest by Monte Carlo simulation (DOSXYZnrc)
Abstract: Introduction: Chest radiography is one of the most common X-ray imaging procedures performed worldwide. During this process, in addition to the chest, other tissues, including the thyroid, are also exposed to radiation. Due to the fact that one of the most important risk factors for thyroid cancer is ionizing radiation, measuring the absorption of X- rays in the thyroid is of spec...
متن کاملCompensation of Cross-Contamination in Simultaneous 201Tl/99mTc Myocardial Perfusion SPECT Imaging
Introduction: It is a common protocol to use 201Tl for the rest and 99mTc for the stress cardiac SPECT imaging. Theoretically, both types of imaging may be performed simultaneously using different energy windows for each radionuclide. However, a potential limitation is the cross-contamination of scattered photons from 99mTc and collimator X-rays into the 201Tl energy window. We used a middle en...
متن کامل